Catalytic properties of a hybrid between cyanobacterial large subunits and higher plant small subunits of ribulose bisphosphate carboxylase-oxygenase.

نویسندگان

  • T J Andrews
  • G H Lorimer
چکیده

The small subunits of spinach ribulosebisphosphate carboxylase-oxygenase were isolated by mild acid precipitation of the hexadecameric holoenzyme. About one-third of the small subunits remained in the supernatant while the remainder, and all of the large subunits, were precipitated and irreversibly denatured. The spinach small subunits were able to reassemble with the large subunit octamer of ribulosebisphosphate carboxylase-oxygenase from the cyanobacterium, Synechococcus ACMM 323, prepared as described previously (Andrews, T. J., and Ballment, B. (1983) J. Biol. Chem. 258, 7514-7518) to produce a catalytically active, hybrid enzyme. The heterologous small subunits bound an order of magnitude less tightly than homologous small subunits and the specific activity of the hybrid, when fully saturated with foreign small subunits, was about half that of the homologously reassembled or native Synechococcus enzyme. In addition, the Km(CO2) of the hybrid was about twice as high. However, the degree of partitioning between carboxylation and oxygenation was identical for the hybrid, the homologously reassembled, and the native Synechococcus enzymes and clearly less in favor of carboxylation than partitioning by the spinach enzyme. Therefore, this important facet of catalysis by ribulosebisphosphate carboxylase-oxygenase appears to be specified exclusively by the large subunit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plastome engineering of ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid.

Targeted gene replacement in plastids was used to explore whether the rbcL gene that codes for the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase, the key enzyme of photosynthetic CO2 fixation, might be replaced with altered forms of the gene. Tobacco (Nicotiana tabacum) plants were transformed with plastid DNA that contained the rbcL gene from either sunflower (Helianthus an...

متن کامل

Kinetics and subunit interactions of ribulose bisphosphate carboxylase-oxygenase from the cyanobacterium, Synechococcus sp.

Ribulose 1,5-bisphosphate carboxylase-oxygenase was purified to electrophoretic homogeneity from the unicellular, marine cyanobacterium, Synechococcus sp. It was composed of large (57,000 dalton) and small (12,000 dalton) subunits in a 1:l stoichiometry. It was rapidly activated by M&‘ plus HC03-, even in the presence of ribulose 1,5-bisphosphate which had no effect on the extent of activatio...

متن کامل

Synthesis and assembly of large subunits into ribulose bisphosphate carboxylase/oxygenase in chloroplast extracts.

We have developed a new system for the in vitro synthesis of large subunits and their assembly into ribulose bisphosphate carboxylase oxygenase (Rubisco) holoenzyme in extracts of higher plant chloroplasts. This differs from previously described Rubisco assembly systems because the translation of the large subunits occurs in chloroplast extracts as opposed to isolated intact chloroplasts, and t...

متن کامل

2 . 1 . 1 - Photosynthetic carbon reduction

Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) is the most abundant single protein on earth and is pivotal for CO2 assimilation by all plants. In higher plants, the holoenzyme consists of eight large subunits, each with a molecular mass of 50-55 kD and eight small subunits of molecular mass 12-18 kD. Large subunits are encoded by a single gene in the chloroplast genome while a family...

متن کامل

Structure of Rubisco from Arabidopsis thaliana in complex with 2-carboxyarabinitol-1,5-bisphosphate

The crystal structure of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Arabidopsis thaliana is reported at 1.5 Å resolution. In light of the importance of A. thaliana as a model organism for understanding higher plant biology, and the pivotal role of Rubisco in photosynthetic carbon assimilation, there has been a notable absence of an A. thaliana Rubisco crystal structure. A. t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 260 8  شماره 

صفحات  -

تاریخ انتشار 1985